18.152 PROBLEM SET 4

due April 15th 10:00 am

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Suppose that $f, g \in C^{\alpha}(\Omega)$. Show that
(1) $[f g]_{\alpha ; \Omega} \leq[f]_{\alpha ; \Omega}[g]_{0 ; \Omega}+[f]_{0 ; \Omega}[g]_{\alpha ; \Omega}$.
(2) $\|f+g\|_{C^{\alpha}(\Omega)} \leq\|f\|_{C^{\alpha}(\Omega)}+\|g\|_{C^{\alpha}(\Omega)}$.

Problem 2. Let $I=[0,1] \subset \mathbb{R}$.
(1) Provide a sequence $\left\{u_{m}\right\}_{m \in \mathbb{N}} \subset C^{0}(I)$ such that for each $x \in I$ the limit $u(x)=\lim _{m \rightarrow+\infty} u_{m}(x)$ exists and

$$
\left\|u_{m}\right\|_{C^{0}(I)} \leq 1 \quad \text { for all } m \in \mathbb{N}, \quad u \notin C^{0}(I)
$$

(2) Suppose that a sequence $\left\{u_{m}\right\}_{m \in \mathbb{N}} \subset C^{0}(I)$ satisfies

$$
\lim _{\min \{m, n\} \rightarrow+\infty}\left\|u_{m}-u_{n}\right\|_{C^{0}(I)}=0
$$

Show that $u(x)=\lim _{m \rightarrow+\infty} u_{m}(x)$ exists for each $x \in I$ and $u \in C^{0}(I)$.
(3) Suppose that given $\alpha \in(0,1]$ a sequence $\left\{u_{m}\right\}_{m \in \mathbb{N}} \subset C^{2, \alpha}(I)$ satisfies

$$
\left\|u_{m}\right\|_{C^{\alpha}(I)} \leq 1
$$

for all $m \in \mathbb{N}$. Show that $\left\{u_{m}\right\}$ has a subsequence $\left\{u_{m_{j}}\right\}$ such that $u(x)=\lim _{m_{j} \rightarrow+\infty} u_{m_{j}}(x)$ exists for each $x \in I$ and $u \in C^{\alpha}(I)$.
$\operatorname{HINT}(3)$: Find a subsequence which is convergent at every rational number.

Problem 3 (Schwarz reflection principle). Suppose that $u \in C^{2}\left(\mathbb{R}_{+}^{n}\right) \cap$ $C^{0}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ is harmonic in \mathbb{R}_{+}^{n} and $u\left(x^{\prime}, 0\right)=0$ for all $x^{\prime} \in \mathbb{R}^{n-1}$. Show that the function

$$
\bar{u}\left(x^{\prime}, x_{n}\right)=\left\{\begin{array}{lc}
u\left(x^{\prime}, x_{n}\right) & \text { if } x_{n} \geq 0 \\
-u\left(x^{\prime},-x_{n}\right) & \text { if } x_{n}<0
\end{array}\right.
$$

obtained from u by odd reflection with respect to x_{n}, is harmonic in \mathbb{R}^{n}.
Hint : Let v be the harmonic function in $B_{r}(0)$ such that $v=\bar{u}$ on $\partial B_{r}(0)$.
Define $w\left(x^{\prime}, x_{n}\right)=v\left(x^{\prime}, x_{n}\right)+v\left(x^{\prime},-x_{n}\right)$ and show $w=0$.

Problem 4. Show that given $\alpha \in(0,1)$ there exists some constant $C=$ $C(n, \alpha)$ such that

$$
\left[D^{2} u\right]_{\alpha ; \overline{\mathbb{R}}_{+}^{n}} \leq[\Delta u]_{\alpha ; \overline{\mathbb{R}}_{+}^{n}}
$$

holds for every $u \in C^{2, \alpha}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ satisfying $u\left(x^{\prime}, 0\right)=0$ for $x^{\prime} \in \mathbb{R}^{n-1}$.
Hint 1 : Use the result in Problem 3.
Hint 2: Use $u_{i}\left(x^{\prime}, 0\right)=u_{j k}\left(x^{\prime}, 0\right)=0$ for $i, j, k \in\{1, \cdots, n-1\}$.

