18.152 PROBLEM SET 4 due April 15th 10:00 am

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Suppose that $f, g \in C^{\alpha}(\Omega)$. Show that

- (1) $[fg]_{\alpha;\Omega} \leq [f]_{\alpha;\Omega}[g]_{0;\Omega} + [f]_{0;\Omega}[g]_{\alpha;\Omega}.$
- (2) $||f + g||_{C^{\alpha}(\Omega)} \le ||f||_{C^{\alpha}(\Omega)} + ||g||_{C^{\alpha}(\Omega)}.$

Problem 2. Let $I = [0, 1] \subset \mathbb{R}$.

(1) Provide a sequence $\{u_m\}_{m\in\mathbb{N}} \subset C^0(I)$ such that for each $x \in I$ the limit $u(x) = \lim_{m \to +\infty} u_m(x)$ exists and

 $||u_m||_{C^0(I)} \le 1 \quad for \ all \ m \in \mathbb{N}, \qquad u \notin C^0(I).$

(2) Suppose that a sequence $\{u_m\}_{m\in\mathbb{N}}\subset C^0(I)$ satisfies

$$\lim_{\min\{m,n\}\to+\infty} \|u_m - u_n\|_{C^0(I)} = 0.$$

Show that $u(x) = \lim_{m \to +\infty} u_m(x)$ exists for each $x \in I$ and $u \in C^0(I)$.

(3) Suppose that given $\alpha \in (0,1]$ a sequence $\{u_m\}_{m \in \mathbb{N}} \subset C^{2,\alpha}(I)$ satisfies

 $\|u_m\|_{C^{\alpha}(I)} \le 1,$

for all $m \in \mathbb{N}$. Show that $\{u_m\}$ has a subsequence $\{u_{m_j}\}$ such that $u(x) = \lim_{m_j \to +\infty} u_{m_j}(x)$ exists for each $x \in I$ and $u \in C^{\alpha}(I)$.

HINT(3): Find a subsequence which is convergent at every rational number.

Problem 3 (Schwarz reflection principle). Suppose that $u \in C^2(\mathbb{R}^n_+) \cap C^0(\mathbb{R}^n_+)$ is harmonic in \mathbb{R}^n_+ and u(x', 0) = 0 for all $x' \in \mathbb{R}^{n-1}$. Show that the function

$$\bar{u}(x', x_n) = \begin{cases} u(x', x_n) & \text{if } x_n \ge 0, \\ -u(x', -x_n) & \text{if } x_n < 0 \end{cases}$$

obtained from u by odd reflection with respect to x_n , is harmonic in \mathbb{R}^n .

HINT : Let v be the harmonic function in $B_r(0)$ such that $v = \bar{u}$ on $\partial B_r(0)$. Define $w(x', x_n) = v(x', x_n) + v(x', -x_n)$ and show w = 0. **Problem 4.** Show that given $\alpha \in (0,1)$ there exists some constant $C = C(n, \alpha)$ such that

$$[D^2 u]_{\alpha;\overline{\mathbb{R}}^n_+} \le [\Delta u]_{\alpha;\overline{\mathbb{R}}^n_+}$$

holds for every $u \in C^{2,\alpha}(\overline{\mathbb{R}}^n_+)$ satisfying u(x',0) = 0 for $x' \in \mathbb{R}^{n-1}$.

HINT 1 : Use the result in Problem 3. HINT 2 : Use $u_i(x', 0) = u_{jk}(x', 0) = 0$ for $i, j, k \in \{1, \dots, n-1\}$.

 $\mathbf{2}$